Assess Yield and Physiological Parameters of Lettuce Affected Different Types and Amounts of Some Organic Wastes

Authors

1 Department of Horticultural Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2 Department of Soil Science, University of Zanjan, Zanjan, Iran.

3 Associate Professor, Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.

Abstract

BACKGROUND: The use of agricultural waste as organic fertilizers is important for soil fertility and plants health production.
OBJECTIVES: The aims of this study were to examine the effects of different types and rates of vermicompost on physiological and morphological properties of lettuce.
METHODS: Present study was conducted according factorial experiment based on complete randomized design with three replication at green house condition. Treatment included different type of vermicompost (1-Carrot vermicompost 2-Sugar beet vermicompost and 3- date fruit composts) and different application rate of vermicompost (Zero or control, 2, 4 and 6 percent of medium dry weight).
RESULT: The results showed that, the type and amount of organic wastes had significant effects on fresh and dry weight, leaf area, plant height, marketability, carotenoid and chlorophyll b content of lettuce. Sugar beet and carrot vermicompost was more effective on most lettuce properties than date fruit waste. The organic compost rate had a sigmoid trend effects on most lettuce properties. The highest and lowest lettuce dry weight was observed respectively in 2% carrot vermin compost (500% more than control) and in date fruit compost (50% lower than control). The highest amount of carotenoid (0.49 mg.gr-1 fresh weight) was in sugar beet vermicompost (6%), which increased by 40% with respect to control. The highest marketable index was observed at (2% and 4%) both in sugar beet, which were increased by 400 and 380 present respectively in compared to control.
CONCLUSION: Sugar beet and then carrot vermicompost were evaluated as the best raw materials for vermicompost production; also 4 and 6 percent had the greatest effect on the growth and yield of lettuce.

Keywords


Adiloglu, S., F. Eryılmaz Açıkgoz, Y. Solmaz, E. Caktu. and A. Adiloglu. 2018. Effect of vermicompost on the growth and yield of lettuce plant (Lactuca sativa L. var. Crispa). Intl. J. Plant Soil Sci. 21(1): 1-5.

Alhajhoj, M. R. 2017. Effects of different types of vermicompost on the growth and rooting characteristics of three rose rootstocks. J. Food Agric. Environ. 15: 22-27.

Alidadi, H., A. Saffari, D. Ketabi, R. Peiravi. and A. Hosseinzadeh. 2017. Comparison of vermicompost and cow manure efficiency on the growth and yield of tomato plant. Turkish J. Agri. Food Sci. Tech. 5(11): 1360-1364.

Ansari, A. A. and K. Sukhraj. 2010. Effect of vermiwash and vermicompost on soil parameters and productivity of okra (Abelmoschus esculentus) in Guyana. P. J. Agri. Res. 23: 137-142.

Asghari, M., M. Yousefi Rad. and A. Masoumi Zavarian. 2016. Organic fertilizers compost and vermicompost effects on quantitative and qualitative traits Lippi citriodora. J. Medicinal Plants. 58: 63-71. (Abstract in English)

Atiyeh, R. M., S. Subler, C. A. Edwards, G. Bachman, J. D Metzger. and W. Shuster. 2000a. Effects of vermicompost and composts on plant growth horticultural container media and soil. J. Pedobiology. 44(5): 579-590.

Atiyeh, R. M., N. Q. Arancon, C. A. Edwards. and J. D. Metzger. 2000b. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bio-Res. Tech. J. 75: 175-180.

Azarmi, R., P. Sharifi Ziveh. and M. Satari. 2008. Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum). Pak. J. Biol. Sci. 11(14): 1797-1802.

Baca, M. T., F. Fornasier. and M. De Nobil. 1992. Mineralization and humification pathways in two composting processes applied to cotton wastes .J. Fermentation and Bio-Eng. 74: 179-184.

Bevacqual, R. F. and V. J. Mellama. 1993. Sewage sludge compost's cumulative effects on crop growth and soil properties. Compost Sci. Utilization. pp. 34-37.

Chang, E. H., R. Sh. Chung. and F. N. Wang. 2008. Effect of different types of organic fertilizers on the chemical properties and enzymatic activities of an Oxisol under intensive cultivation of vegetables for 4 years. Soil Sci. Plant Nutr. 54(4): 587-599.

Cruz, R., P. Baptista, S. Cunha, J. Alberto Pereira. and S. Casal. 2012. Carotenoids of lettuce (Lactuca sativa L.) grown on soil enriched with spent coffee grounds. J. Mol. 17: 1535-1547. Doi:10.3390/molecules17021535.

Durak, A., Ö. Altuntaş, İ. Kutalmış Kutsal, R. Işık. and F. Ege Karaa. 2017. The effects of vermicompost on yield and some growth parameters of lettuce. Turkish J. Agri. Food Sci. Tech. 5(12): 1566-1570.

Gopal, M., A. Gupta, C. Palaniswami, R. Dhanapal. andG. V. Thomas. 2010. Coconut leaf vermiwash: a bio-liquid from coconut leaf vermicompost for improving the crop production capacities. Current Sci. J. 98: 1202-1210.

Hernandez-Rodríguez, A., L. Robles-Hernandez, D. Ojeda-Barrios, J. Jesus Prieto-Luevano, A. González-Franco. and V. Guerrero-Prieto. 2017. Semi compost and vermicompost mixed with peat moss enhance seed germination and development of lettuce and tomato seedlings. J. Interciencia. 42(11): 774-779.

Hernandez, O. L., A. Calderín, R. Huelva, D. Martínez-Balmori. and F. Guridi. 2015. Humic substances from vermicompost enhance urban lettuce production. Agron. Sust. Develop. Springer Verlag/EDP Sciences/INRA. 35(1): 225-232.

Huerta, E., O. Vidal, A. Jarquin, V. Geissen. and R. Gomez. 2018. Effect of vermicompost on the growth and production of Amashito pepper, interactions with earthworms and Rhizobacteria. J. Compost Sci. Utilization. 18(4): 282-288.

Hunt, R. 1982. Plant growth curves. London: Edward Arnold. UK. 248p.

Jabeen, N. and R. Ahmad. 2017. Growth response and nitrogen metabolism of sunflower (Helianthus annuus L.) to vermicompost and biogas slurry under salinity stress. J. Plant. Nutri. 40(1): 104-114.‏

Jadia, D. C. and M. H. Fulekar. 2008. Vermi composting of vegetable waste: A biophysico-chemical process based on hydro-operating bioreactor. Afri. J. Bio-Tech. 7: 3723-3730.

Joshi, R., S. Jaswinder. and A. Pal Vig. 2014. Vermicompost as an effective organic fertilizer and bio control agent: effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. pp. 1-23.

Khosravi, A., M. Zarei. and A. Ronaghi. 2018. Effect of PGPR, phosphate sources and vermicompost on growth and nutrients uptake by lettuce in a calcareous soil. J. Plant Nutr. 41(1): 80-89.

Lee, Y. S., D. J. Park, J. H. Kim, H. S. Kim, S. Y. Chung. and Y. L. Choi. 2013. Growth promotion of lettuce by bio fertilizer, bioactive, prepared from Bacillus subtilus HR-1019 and Nacetyl-thioproline. J. Life Sci. 1: 79-83.

Manyuchi. M. M., T. Chitambwe, A. Phiri P. Muredzi. and Q. Kanhukamwe. 2013a. Effect of vermicompost, vermiwash and application time on soil physicochemical properties. Intl. J. Environ. Eng. 4: 216-220.

Manyuchi, M. M.,L. Kadzungura, A. Phiri. and P. Muredzi. 2013b. Effect of vermicompost, vermiwash and application time on Zea mays growth. Intl. J. Sci. Eng. Tech. 2: 638-641.

Manyuchi, M. M., T. Chitambwe, P. Muredzi. and Q. Kanhukamwe. 2013c. Continuous flow through vermin reactor for medium scale vermin composting. Asian J. Eng. Tech. 1:5-9.

Manyuchi, M. M., A. Phiri, P. Muredzi. and T. Chitambwe. 2013d. Comparison of vermicompost and vermiwash bio fertilizers from vermicomposting waste corn pulp. World Acad. Sci. Eng. Tech. J. 7: 360-371.

Mohsen, A., M. Uosefi. and A. Masoumi.2016. Effects of organic fertilizers of compost and vermicompost on qualitative and quantitative traits of Lemon. J. Medicinal Plants. 2(58): 63-71.

Muhammad, A., A. J. Griffiths. K. P. Williams. and D. L. Jones. 2007. Evaluating the growth characteristics of lettuce in vermicompost and green waste compost. Europe. J. Soil Biol. 43(1): 316-319.

Nadi, M. and A. Golchin. 2011. The effects of different vermicompost on the growth and chemical composition of the pistachio seedlings. J. Res. Agri. Sci. 7(1): 59-69.

Nath, G. and K. Singh. 2012. Effect of vermiwash of different vermin composts on the kharif crops. J. Central Europe. Agri. 13: 379-402.

Porter, V. C. N., M. Z. De Negreiros, F. Bezerra. and C. C. Nogueirai. 1999. Organic matter sources and doses on lettuce yield. Catinga. 12(1-2): 7-11.

Sallaku, G., I. Babaj, S. Kaciu. and A. Balliu. 2009. The influence of vermicompost on plant growth characteristics of cucumber. (Cucumis sativus L.). J. Food Agri. Environ. 7(3-4): 869-872.

Sharifian, Z., A. A. Maghsoudi Mood. and N. Mohamadi. 2014. Effect of different ratios of municipal solid waste compost on growth parameters and yield of marigold and daisy. Intl. J. Adv. Biol. Biomedical Res. 2(1): 43-50.

Stancheva, I. and I. Mitova. 2002. Effects of different sources and fertilizer rates on the lettuce yield and quality under controlled conditions. Bulg. J. Agri. Sci. 8: 157-160.

Valadabadi, S. A. and H. A. Farahani. 2011. Investigation of bio fertilizers influence on quantity and quality characteristics in Nigella sativa L. J. Horti. For. 3(3): 88-92.

Weerasinghe, T. K. and I. H. W. K. De Silva. 2017. Effect of applying different ratios of compost made of municipal solid waste on the growth of Zea mays L. (Corn). J. Soil Sci. Environ. Manage. 8(3): 52-60.

Yusof, Z., S. Ramasamy, N. Z. Mahmood. and J. S. Yaacob. 2018. Vermicompost supplementation improves the stability of bioactive anthocyanin and phenolic compounds in Clinacanthus nutans Lindau. J. Molecules. 23(1345): 1-13.

Zaidi, M. A., H. Murase. and N. Honami. 1999. Neural network model for the evaluation of lettuce plant growth. J. Agri. Eng. Res. 74(3): 242-237.