Role of Copper on Physiological Parameters and Salt Tolerance in Sweet Sorghum (Sorghum bicolor L.) Cultivars

Authors

1 Assistant Professor, Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

2 PhD. Student, Department of Agronomy, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.

Abstract

This research was carried out to determine effect of sorghum cultivars and copper foliar spray on physiological traits under saline water situation via split plot experiment based on randomized complete blocks design with four replications during 2015 and 2016 year. The main plot consisted sorghum cultivars at three level (Kimia, KGS10, KGS4) and Copper foliar spray (C1: 0 or control, C2: 0.20, C3: 0.30 and C4: 0.40 kg Cu ha-1) by source of CuSO4 at stem elongation stage (55 days after planting date) belonged to sub plot. Result of combined analysis of variance revealed effect of different sorghum cultivar, Cu foliar application and interaction effect of treatment on all measured traits was significant at 1% probability level. Foliar application of copper had effective role on salt tolerant and physiological parameters of the studied sorghum cultivars were significantly affected by the exposure to well water and copper. The cultivar Kimia was observed as more salt tolerant and cultivar KGS4 was more salt sensitive on the basis of starch, amylose and amylopectin rates. Cultivar Kimia was also observed to produce high rates of amylose and amylopectin compared with the other cultivars. Results of this experiment showed that effect of copper on physiological contents is a useful tool for measuring the salt tolerance among sorghum cultivars to identify possible donors for future sorghum quality enhancement and breeding and be useful to the local sorghum growing farmers under salt stress. According to result of current research Kimia cultivar with foliar application of 0.4 kg Cu ha-1 it can suggested to farmers to decrease negative effect of salinity situation.

Keywords


Akbarimoghaddam, H., M. Galavi, A. Ghanbari. and N. Panjehkeh. 2011. Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J. Sci. 9(1): 43-50.

Almodares, A., R. Taheri. and S. Adeli. 2007. Inter-relationship between growth analysis and carbohydrate contents of sweet sorghum cultivars and lines. J. Environ. Biol. 28: 527-531.

A.O.A.C. 2005. Official Methods of AOAC International. 18th Ed. AOAC international. Gaithersburg. MD. USA.

Bahizire, F. B. 2007. Effect of salinity on germination and seedling growth of canola (Brassica napus L.). MSc. Thesis. Stellenbosch Univ. South Africa.

Bano, A. and M. Fatima. 2009. Salt tolerance in Zea mays following inoculation with Rhizobium and Pseudomonas. Biol. Fertility Soils. 45: 405–413.

Biliaderis, C. G. and J. Zawistowski. 1990. Viscoelastic behavior of aging starch gels: effects of concentration, temperature and starch hydrolysates properties. Cereal Chem. pp. 240-245.

Brennan, R. F. 1990. Effectiveness of some copper compounds applied as foliar sprays in alleviating copper-deficient soils of Western Australia. Australian J. Exp. Agri. 30: 687-691.

Buah, S. S. J. and S. Mwinkaara. 2009. Response of sorghum to nitrogen fertilizer and plant density in the guina Savana zone. Agron. J. 8(3): 124-130.

Chao, M., K. Kojima, N. Xu, J. Mobley. and X. Liu. 2015. Comparative proteomics analysis of high n-butanol producing metabolically influenced copper. J. Biotech. 193: 108-119.

Chuck, C. J. and J. Donnelly. 2014. The compatibility of copper potential with saline water in sorghum cultivars. Apply of Energy. 120: 245–252.

Craig, S. A. S. and J. R. Stark. 1984. A comparison of the molecular properties of sorghum starches of different origins. Starch. J. 36: 127-131.

Davis, L., P. Rogers, J. Pearce. and P. Peiris. 2006. Evaluation of zymomonas-based ethanol production from a hydrolyzed waste starch stream. Biomass Bioenergy. 30: 809-814.

Dobermann, A. and T. Fairhurst. 2000. Rice: Nutrient disorders and nutrient management IRRI. Potash and Phosphate Institute of Canada. 192 p.

Fan, M. S., F. J. Zhao, S. J. Fairweather-Tait, P. R. Poulton, S. J. Dunham. and S. P. McGrath. 2008. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elements in Med. Biol. 22: 315-324.

Frederickson, H., J. Silverio, R. Anderson, A. C. Ellison. and P. Aman. 1998. The influence of amylose and amylopectin characteristics on gelatinization and retro gradation properties of different starches. Carbohydr. Polym. pp. 119-134.

Fernandez, J. C. and F. S. Henriques. 1991. Biochemical, physiological, and structural effects of excess copper in plants. The Botanical Review. 57: 246-273.

EL-Metwally, A. E., F. E. Abdalla, A. M. El-Saady, S. A. Safina. and S. EI-Sawy. 2010. Response of wheat to magnesium and copper foliar feeding under sandy soil condition. J. Am. Sci. 6(12): 818-823. In: Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd Ed. New York: Academic Press. USA. Harcourt Brace Jovanovich. 674 p.

El-Naim, A. M., K. E. Mohammed, E. A. Ibrahim. and N. N. Suleiman. 2012. Impact of salinity on seed germination and tannin content of three sorghum cultivars. Sci. Tech. 2(2): 16-20.

FAOSTAT. 2013. FAO statistical year book of 2013. Word food and Agriculture. Statistical Division of Food and Agriculture Organization of UN.

Faraco, V. 2015. Copper tools for protein and tannin production in saline lands. J. Biotech. 194: 394-407.

Graham, R. D. 1975. Male sterility in wheat plants deficient in copper. Nature (London). UK. 254: 514-515.

Hefny, M. M., E. M. R. Metwali. and A. I. Mohamed. 2015. Assessment of genetic diversity of sorghum genotypes under saline irrigation water based on starch and some selection indices. Australian J. Crop Sci. 7(12): 19-35.

Hoseney, R. C., E. Varriano-Marston. and D. A. V. Dendy. 1981. Sorghum and millets. In: Advances in cereal science and technology; Pomeranz, Y. Ed. Inc. St Paul. MN. Vol. IV. pp. S70-144.

Huebner, F. R, T. C. Nelsen, O. K. Chung. and J. A. Bietz. 1997. Protein distributions among hard red winter wheat varieties as related to environment and baking quality. Cereal Chem. J. 74: 123-128.

Hung, P. V., N. H. Phat. and N. T. L. Phi. 2013. Physicochemical properties and copper effects on protein bodies complexes in grain sorghum. Biomass Bioenergy. 45: 155-167.

Hu, Y., U. Schmidhalter. 2002. Limitation of salt stress to plant growth. In: Hock, B., C. F. Elstner. Editors. Plant Toxicology. Marcel Dekker Inc. New York. USA. pp. 91-224.

Hypla, A. 2016. Effect of Foliar application of micronutrient on Agro physiological traits of Sorghum genotypes. Res. Report. 47 p.

ICRISAT. 2013. Climate change, agriculture and food security. Intl. Crops Res. Institute for the Semi-Arid Tropics.

Jane, J., Y. Y. Chen, L. F. Lee, A. E. McPherson, K. S. Wong, M. Radosavljevic, T. Kasemsuwan. 1999. Effects of amylopectin branch chain length and amylose content on the gel and pasting properties of starch. Cereal Chem. pp. 629-637.

Jaros, A., U. Rova. and K. A. Berglund. 2013. Acetate adaptation of Clostridia tyrobutyricum for improved fermentation production of butyrate due to copper in sorghum. World Sci. 66: 150-161.

Khoddami, A., H. H. Truong, S. Y. Liu, T. H. Roberts. and P. H. Selle. 2015. Concentrations of specific phenolic compounds in six red sorghums influence nutrient utilization in broiler chickens. Animal Feed Sci. Tech. 210: 190-199.

Kidambi, S. P., D. R. Krieg. and D. T. Rosenow. 1990. Genetic variation for gas exchange rates in grain sorghum. Plant Physiol. J. 92: 1211-1214.

Lavenson, D. M., E. J. Tozzi, N. Karuna. and M. J. McCarthy. 2014. The effect of copper on the liquefaction of cellulosic fibers in sorghum. Bio-Res. Tech. 117: 365-379.

Liu, S., K. M. Bischoff, T. D. Leathers. and S. R. Hughes. 2013. Butyric acid from fermentation of cellulosic biomass hydrolysates by copper in sorghum. Bio-Res. Tech. 143: 322-329.

Lonergan, J. F. 1981. Distribution and movement of copper in plants. In: Copper in plants and soil. (Eds. J. F. Loneragan, A. D. Robson, R. D. Graham). Proc. Golden Jubilee Intl. Sym. May. Murdoch Univ. Perth. Western Australia. pp. 165-188.

Omami, E. N. 2005. Response of amaranth to salinity stress. Ph.D. Thesis. Pretoria Univ. South Africa.

Metwali, E. M. R. 2015. Genetic diversity for sorghum genotypes under saline water irrigation based on copper spray. Life Sci. J. 5: 10-19.

Mohamed, A. E. and G. M. Taha. 2003. Levels of trace elements in different varieties of wheat determined by atomic absorption spectroscopy. Arabian J. Sci. Eng. 28: 163-171.

Pamal, S. 2017. Evaluation qualitative and quantitative traits affected macro and micro nutrient and different sorghum cultivars. Res. Report. 51 p.

Rani, C. R., C. Reema, S. Alka. and P. K. Singh. 2015. Salt tolerance of sorghum bicolor cultivars and copper influence to Na uptake. Res. J. Sci. 6(5): 160-170.

Rooney, L. W. and J. M. Awika. 2005. Specialty sorghum for healthful food and feed. In: Specialty grain for food and feed; Abdel- Aal, E. and P. Wood. Inc. St. Paul. MN. pp. 283-312.

Roychoudhury, A. and M. Chakraborty. 2013. Biochemical and molecular basis of varietal difference in plant salt tolerance. J. Res. Biol. 3(4): 422-454.

Roy, R. C., A. Sagar, J. E. Tajkia, Md. A. Razzak. and A. K. M. Zakir Hossain. 2018. Effect of salt stress on growth of sorghum germ plasms at vegetative stage. J. Bangladesh Agri. Univ. 16(1): 67-72.

Roy, S. J., S. Negrao. and M. Tester. 2014. Salt resistant crop plants. Biotech. 26: 115-124.

Ruiz-Garcia, Y. and E. Gomez-Plaza. 2013. Elicitors: A tool for improving fruit phenolic content. Agri. J. 3: 33-52.

Sang, Y., S. Bean, P. A. Seib, J. Pedersen. and Y.Ch. Shi. 2008. Structure and functional properties of sorghum starches differing in amylose content. J. Agric. Food Chem. 56: 6680–6685.

Serna-Saldi´Var, S. O., O. Cristina. and E. Heredia-Olea. 2012. Sorghum as a multifunctional crop for the production of fuel ethanol and tannin. J. Biotech. 12: 630–644.

Shergo, A., M. T. Labuschagne. and A. Biljon. 2013. Multivariate analysis of copper diversity in sorghum land accessions from Western Ethiopia. J. Biol. Sci. 13(12): 67-74.

Skrabanja, V., H. G. M. Liljeberg, C. L. Hedley, I. Kreft. and M. E. Bjorck.1999. Influence of genotype and processing on the in vitro rate of starch hydrolysis and resistant starch formation in pea. J. Agric. Food Chem. 47: 2033–2039.

Sutradhar, A. K., D. E. Kaiser, C. J. Rosen. and J. A. Lamb. 2017. Copper for crop production. Nutr. Manag. FS-6790-B. Univ. Minnesota. Exten. pp. 1-6.

Welch, R. M. and R. O. Gramhan. 1999. A new paradigm for world agriculture: Meeting human needs: Productive, sustainable, nutritious. Field Crop Rev. 60(1-2): 1-10.

Yanagisawa, T., E. Donion, M. Fujita, C. Kirivuchi-Otobe. and T. Takayama. 2006. Starch pasting properties and amylose content from 17 waxy barley lines. Cereal Chem. pp. 354-357.

Zhu, F., X. Yang, Y. Z. Cai, E. Bertoft. and H. Corke. 2011. Physicochemical properties of sweet potato starch. Starch. J. 63: 249-259.

Zhu, F. 2015. Interactions between starch and phenolic compounds in sorghum cultivars. Trends Food Sci. Tech. 43: 129-143.