Effects of Different Rates of Selenium Fertilizer and Cow Manure on Selenium Uptake in Festuca arundinacea

Authors

1 Department of Soil Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

2 Department of Agronomy and Plant Breeding, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran.

Abstract

One of the crucial elements for livestock and human nutrition is selenium and its deficiency or toxicity can harm human and livestock health. The present study is designed with the aim of studying the effect of different levels of selenium fertilizer (Selcote-Ultra) and cow manure on the uptake of selenium in tall fescue. For this purpose, a pot experiment with complete randomized block design in the form of a factorial experiment was carried out on a single soil sample with the cultivation of Festuca arundinacea (Tall fescue), five levels of selenium fertilizer (0, 5, 10, 20 and 40 g.ha-1), and two levels of cow manure (Zero and 100 tons per hectare) with three replications during the 2014-2015. The result of means comparison showed that the uptake of selenium during three harvests was affected by different levels of selenium fertilizer and cow manure. With increasing selenium rates, selenium uptake in the plant aerial parts in all three harvests raised significantly (p<0.05). Selenium uptake for the cattle in all treatments except for the control treatment in all three harvests was in the optimal range, therefore the treatment of 5 g.ha-1 selenium could be used as a suitable treatment for providing cattle and human demands with selenium, because its application is more economical in comparison to treatments of 10, 20, and 40 g.ha-1. With increasing cow manure application, selenium uptake in tall fescue in all three harvests revealed a significant decrease (p<0.05) which is due to dilution effect and the organic material role in selenium absorption.

Keywords


Broadley, M. R., P. J. White, R. J. Bryson, M. C. Meacham. and H. C. Bowen. 2006. Biofortification of UK food crops with selenium. Proc. Nutr. Soc. 65: 169-181.

Broadley, M. R., J. Alcock, J. Alford, P. Cartwright, I. Foot Ian, S. J. Fair weather-Tait, D. J. Hart, R. Hurst, P. Knott, S. P. Mc-Grath, M. C. Meacham, K. Norman, H. Mowat, P. Scott, J. L. Stroud, M. Tovey, M. Tucker, P. J. White, S. D. Young. and F. J. Zhao. 2010. Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se fertilization. Plant Soil. J. 332: 5–18.

Carter, M. R. and E. G. Gregorich. 2006. Soil sampling and methods of analysis, 2nd, CSSS and SCSS Pub. Madison WI. USA.

Chu, J. Z., X. Q. Yao. and Z. N. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. J. 136: 355–363.

Davies E. B. and J. H. Watkinson. 2006. Uptake of native and applied selenium by pasture species. N. Z. J. Agric. Res. 9: 317-327.

Ekanayake, L. J., D. Thavarajah, E. Vial, B. Schatz, R. McGee. and P. Thavarajah. 2015. Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crop. Res. J. 177: 9-14.

Eurola, M., G. Alfthan, A. Aro, P. Ekholm, V. Hietaniemi, H. Rainio, R. Rankanen. and E. R. Venalainen. 2001. Results of the Finnish selenium monitoring program. 2000–2001 AgriFood Research Finland. Res. Reports. 36 p.

Floor, G. H., S. Calabrese, G. Roman-Ross. and A. Aiuppa. 2011. Selenium mobilization in soils due to volcanic derived acid rain: an example from Mt Etna volcano, Sicily. Chem. Geol. J. 289(3): 235–244.

Funes-Collado, V., A. Morell-Garcia, R. Rubio. and J. Lopez-Sanchez. 2013. Selenium uptake by edible plants from enriched peat. Sci. Hortic. J. 164: 428–433.

Gammelgaard, B. and M. I. Jackson. 2011. Review. Surveying selenium speciation from soil to cell-forms and transformations. Anal. Bio-anal. Chem. J. 399: 1743–1763.

Gissel-Nielsen, G. 1981. Foliar application of selenite to barley plants Low in selenium. Commun. Soil Sci. Plant Anal. J. 12: 631-642.

Gupta, U. C., H. T. Kunelius. and K. A. Winter. 1982. Effect of applied selenium on the selenium content of barley and forages and soil selenium depletion rates. Can. J. Soil Sci. 62: 145-154.

Hall, J. A., G. Bobe, J. K. Hunter, W. R. Vorachek. and W. C. Stewart. 2013. Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves. Plos one.

Hartikainen, H., T. Xue. and V. Piironen. 2000. Selenium as an antioxidant and pro-oxidant in ryegrass. Plant Soil. J. 225: 193-200.

Hartikainen, H. 2005. Review. Biogeochemistry of selenium and its impact on foodchain quality and human health. J. Trace Elem. Med. Biol. 18: 309–331.

Hawkesford, M. J. and F. J. Zhao. 2007. Strategies for increasing the selenium content of wheat. J. Cereal Sci. 46: 282–292.

Johnson, C. C., X. Ge, K. A. Green. and X. Liu. 2000. Selenium distribution in the local environment of selected villages of the Keshan Disease belt, Zhangjiakou District, Hebei Province, People's Republic of China. Appl. Geochem. J. 15 (3): 385–401.

Kopsell, D. A. and W. M. Randle. 1997. Selenate concentration affects selenium and sulfur uptake and accumulation by granex 33 onions. J. Amer. Soc. Hort. Sci. 122(5): 721-726.

Lee, K. H. and D. Jeong. 2012. Bimodal actions of selenium essential for antioxidant and toxic pro-oxidant activities: the selenium paradox. Mol. Med. Rep. 5: 299–304.

Lin, Z. Q. 2009. Uptake and accumulation of selenium in plants in relation tochemical speciation and biotransformation. In: Banuelos, G. S., Lin, Z.-Q. (Ed.), Development and Uses of Biofortified Agricultural Products. CRC Press. Boca-Raton. pp: 45–56.

Lyons, G. H., Y. Genc, K. Soole, J. C. R. Stangoulis, F. Liu. and R. D. Graham. 2009. Selenium increases seed production in Brassica sp. Plant Soil. 318: 73–80.

Mao, J., V. J. Pop, S. C. Bath, H. L. Vader, C. W. Redman. and M. P. Rayman. 2016. Effect of low dose selenium on thyroid autoimmunity and thyroid function in UK pregnant women with mild-to-moderate iodine deficiency. Eur. J. Nutr. 55(1): 55–61.

Moreno-Rodriguez, M. J., V. Cala-Rivero. and R. Jimenez-Ballesta. 2005. Selenium distribution in top soils and plants of a semi-arid Mediterranean environment. Environ. Geo-chem. Health J. 27: 513–519.

Rayman, M. P., H. Goenaga-Infante. and M. Sargent. 2008. Food-chain selenium and human health: spotlight on speciation. Review. Br. J. Nutr. 100: 238–253.

Reilly, C. 2006. Selenium in Food and Health. 2nd Ed. Springer. USA.

Singh, M. and N. Singh. 1978. Toxicosis in pigs fed selenium-accumulating Astragalus plant species or sodium selenate. Soil Sci. J. 126: 255-262.

Surai, P. F. 2006. Selenium in ruminant nutrition. In: Surai PF, editor. Selenium in nutrition and health. Nottingham Univ. Press. Netherlands. pp: 487–587.

Tan, J., W. Zhu,  W. Wang, R. Li, S. Hou, D. Wang. and L. Yang. 2002. Selenium in soil and endemic diseases in China. Sci. Total Environ. J. 284: 227–235.

Tolu, J., Y. Thiry, M. Bueno, C. Jolivet, M. Potin-Gautier. and I. Le Hecho. 2014. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Sci. Total Environ. J. 479: 93–101.

Wang, Q. Y., J. Zhang, B. Z. Zhao, X. L. Xin, X. H. Deng. and H. Zhang. 2016. Influence of long term fertilization on selenium accumulation in soil and uptake by crops. Pedosphere. J. 26(1): 120–129.

Wells, N. 1997. Selenium in horizons of soil profiles. N. Z. J. Sci. 30: 142-170.

Whelan B. R., N. J. Barrow. and D. W. Peter. 1994. Selenium fertilizers for pastures grazed by sheep. Wool and live weight responses to selenium. Aust. J. Agric. Res. 45: 877–887.

White, P. J. 2015. Selenium accumulation by plants. Ann. Bot. J. 117: 1–19.

Zeng, H. and G. F. Combs Jr. 2008. Review. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J. Nutr. Bio-chem. 19: 1–7.

Zhu, Sh., Y. Liang, D. Gao, X. An. and F. Kong. 2017. Spraying foliar selenium fertilizer on quality of table grape (Vitis vinifera L.) from different source varieties. Sci. Hortic. 218: 87–94.